

EE 673, Power Electronics and Power System Laboratory Indian Institute of Technology, Bombay Experiment : Conducted EMI measurement

Date- 28/03/2025

Duration: 3 hours

<u>Software</u>

Activity 1:

- Model the flyback converter with all the parasitics in LTspice in open-loop configuration.
- Connect a single LISN to measure complete EMI (CM + DM).

• Capture the waveform to observe both common-mode and differentialmode noise combined.

Steps to obtain EMI spectrum:

- Run the simulation.
- Open the plot window.
- Right click \rightarrow View \rightarrow FFT \rightarrow Select measurement port
- TO convert into $dB\mu V \rightarrow right$ click to open expression editor \rightarrow multiply by factor $5*10^5$

Activity 2 -

 ADD CISPR limit lines for acceptable EMI levels. The EMI plot (in dBµV) should be below the CISPR limit line across the entire frequency range. Table for Class B (Residential, commercial & light industrial, PC, notebook adapter) CISPR limits given below.

Frequency (MHz)	Quazi Peak (dBµV)
0.15 - 0.5	66 decreasing to 56
0.5 - 5	56
5 - 30	60

Steps to add CISPR line:

- Right click on FFT plot window →Notes & Annotation → lines → Draw lines according to CISPR standards
- Identify frequency components exceeding the limits and find maximum frequency components.
- Save the plot settings

Activity 3 – Connect two LISN to measure CM and DM noise separately.

- To get the EMI spectrum follow the steps in activity 1 and select both measurement ports → Alt & double click to get expression editor and write the below formulas
- $CM \rightarrow (V_1 + V_2) * 500000$
- $DM \rightarrow (V_1 V_2) * 500000$
- ADD CISPR limit line to find the frequency components exceeding the limits find maximum frequency components for which filter need to be designed.

Activity 4 –

Change gate resistance and observe the effect on CM & DM noise.

Activity 05 –

• Change the switching frequency and observe the effect on CM & DM noise.

<u>Hardware</u>

Activity 1: Oscilloscope settings

- Channel $1 \rightarrow$ Set probe impedance to 50Ω .
 - \circ Spectrum view \rightarrow Turn ON display \rightarrow set unit in dBµV \rightarrow Normal/max-Hold
- Spectrum plot → Center frequency = 15 MHz, Span = 30 MHz, RBW = 9 kHz / 10 kHz.
- Spectrum plot \rightarrow view settings \rightarrow Set X-axis as log
- Adjust trigger for stable spectrum

Activity 2: Connect a single LISN to observe complete EMI (CM + DM). Note down the maximum frequency component.

Activity 3: Connect two LISN to observe CM and DM noise separately. Note down the maximum frequency component for which filter need to be designed.

Activity5: Connect the EMI filter and observe the effect on CM & DM noise.

Activity 4: Change gate resistance and observe the effect on CM & DM noise.

Postlab Activities:

Activity 1 - Write all the observation during the lab in hardware and software.

Activity 2 – Design the EMI filter to limit the CM-DM noise under the CISPR standards for the flyback in LTspice.

(Attenuation required)_{DM} = Max value of DM noise - limit + 5dB(safety margin)

(Attenuation required)_{CM} = Max value of CM noise - limit + 5dB(safety margin)

Filter corner frequencies:

(Attenuation required)_{DM} = 40* $\log_{10}(\frac{\text{Freq of max noise components } (f_{max})}{\text{Corner frequency } (f_{DM})})$

(Attenuation required)_{CM} = 40* $\log_{10}(\frac{\text{Freq of max noise components }(f_{max})}{\text{Corner frequency }(f_{CM})})$

(Note: Youtube videos for filter design is given in the resource material for the reference.)

Activity 3 – Find the tradeoff between switching loss and EMI spectrum.